
1

WSRC-MS-99-00543

DESIGN AND ANALYSIS OF PACKET SWITCHED NETWORKS FOR CONTROL
SYSTEMS∗∗

Edward Kamen1, Payam Torab2, Kenneth Cooper3, and George Custodi4

This document was prepared in conjunction with work accomplished under
Contract No. DE-AC09-96SR18500 with the U. S. Department of Energy.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus,
product or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific
commercial product, process or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government
or any agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government
or any agency thereof.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE Contractors from the Office of Scientific and
Technical Information, P. O. Box 62 Oak Ridge, TN 37831; prices available
from (423) 576-8401. Available to the public from the National Technical
Information Service, U.S. Department of Commerce, 5285 Port Royal Road,
Springfield, VA 22161.

Abstract

This paper contains a methodology for analyzing and designing a computer network for
application to complex control systems. The focus is on the analysis and design of a local
area network (LAN) for realizing the high-level control network that interconnects input-
output controllers with devices for monitoring and analysis and with high-level controllers
such as supervisory PLCs. Part of the development given in this paper can also be applied to
the device-level network (fieldbus) that interconnects input-output controllers with sensors,

∗ This work was supported in part by ERDA under Contract No. 97090.
1 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0250. e-
mail: kamen@ee.gatech.edu
2 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0250. e-
mail: ptorab@ee.gatech.edu
3 Westinghouse Savannah River Co., Building 730-B, Aiken, SC 29808. e-mail:ken.cooper@srs.gov
4 Westinghouse Savannah River Co., Building 703-45A, Aiken, SC 29808. e-mail: george.custodi@srs.gov

2

actuators, and other devices in the system being controlled. The high-level network and the
device-level network form a two-layer architecture that is typical in control applications. A
procedure is given for generating a network design with a hierarchical hub topology having
full redundancy. Then in terms of a graph model of the network, procedures are given for
studying network availability and analyzing the information flow rates through the links and
internal nodes of the network

1. Introduction

The current state of the art in the design of computer networks for complex, highly
distributed control systems is experienced based. The usual approach is to evaluate network
performance data from similar type systems and then to purchase the highest performing
equipment the project funds will support. This approach frequently leads to expensive
systems that fail to meet performance specifications. The work presented in this paper is an
attempt to provide an analytic basis for making network topology and component choices.
The network issues that initiated this work were network availability and the capability to
transfer a required amount of information in a specified time. Given system performance
requirements, the approach developed in this paper can be used to modify an existing design
so as to meet the requirements. The approach ensures that equipment is added or upgraded
only where a performance gain can be realized.

The paper is organized as follows. After a brief introduction to the network graph
model, a heuristic approach to generate an initial design is discussed in Section 3. The initial
design is a typical two or three-level architecture based on two or three classes of network
switch devices. Various degrees of redundancy can be added (heuristically) at this stage to
improve the network reliability. Network reliability and availability analysis is discussed in
detail in Section 4. Specifically, it is shown how the initial design can be further refined to
achieve a specified network availability. Finally, a load analysis technique is developed in
Section 5 that enables the designer to compute the maximum offered load to all network
devices and decide on the capacity of these devices.

2. Network Graph Model

Given a collision-free packet-switched network, let)](),([)(tUtXtG = denote the graph
model representing the network interconnection at time t , where)(tX is the set of external
nodes (end nodes) and internal nodes at time t and)(tU is the set of links connecting the
external and internal nodes at time t . The graph)(tG is referred to as the operational
network at time t . We further assume that)(tG defines a tree; that is, the operational
network at any time t does not contain any cycles. This is the case for switched Ethernet
with full duplex links and some ATM network topologies.

For standard non-switched Ethernet and device-level networks, the operating paths
between the nodes do not change as a function of time, and thus for such networks)(tG is
independent of time. However, in a switched network such as switched Ethernet or ATM, the
paths between internal nodes can change as a result of the switching actions. Hence, for these

3

networks the network graph model is time varying. When)(tG varies as a function of time,
the total network is given by the total graph],[UXG = , where X is the union of the
elements of)(tX and U is the union of the elements of)(tU as t ranges over the interval of
operation. In general, the total graph will have cycles resulting from the existence of multiple
paths between the nodes, and thus it does not define a tree.

3. Network Design

The starting point to network design is the specification of the number of end nodes, that is,
the number of nodes to be connected to the network, and the physical location of the end
nodes. To carry out network design, it is also necessary to know the expected information
flow rate from end node to end node for all of the end nodes to be connected to the network.
We shall specify this in terms of the maximum flow rate ija from end node i to end node j .

Given the number of end nodes, the location of end nodes, and the maximum flow
rates ija , the problem is to design a network that has a desired reliability and availability and

an acceptable performance. Network design can be carried out by first generating an initial
design "on paper", and then modifying the design based on an analysis of
reliability/availability and the offered loads to links and internal nodes using the procedures
given in the following two sections. The generation of an initial design requires that one
specify a topology for the network that describes the interconnection of the network
components. This is equivalent to specifying the network graph model)](),([)(tUtXtG =
that was defined in the previous section.

The most common topology in use today (particularly for switched Ethernet) is a
hierarchical hub (collapsed star) configuration. An example of a two-level hierarchical
structure is shown in Fig. 1. As seen from the figure, the top level of the network consists of
the backbone and the lower level contains three hubs covering the end nodes. The backbone
and the hubs are switches and the links provide full-duplex communication, and thus there
are no packet collisions in the network.

The number of levels in a hierarchical hub configuration depends on the number of
end nodes, the physical location of the end nodes, and the number of ports on the switching
hubs. We shall next give a procedure for generating an initial hierarchical hub design with an

HubHub Hub

Backbone

Fig.1 A two-level hierarchical hub configuration

4

appropriate number of levels. In this procedure it is assumed that the network can be built
using high-capacity (backbone) switches, intermediate-capacity switches, and low-capacity
switches. The steps of the procedure are as follows:

1. Determine the number N of end nodes, the location of the end nodes, and the
maximum flow rates ija for Nji ,,1, K= .

2. Determine the maximum flow rate ia to and from node i , where ia is given by

∑
=

+=
N

j
jiiji aaa

1

)(

3. Order the end nodes in terms of the flow rate ia , beginning with the end node having

the smallest flow rate.
4. Starting with the end nodes having the smallest flow rate, group the nodes that are in

close physical proximity by connecting them to low-capacity switches.
5. Continue grouping the end nodes until the total flow for a group exceeds the capacity

of the low-level switch. If the grouping of the nodes does not result in a flow
exceeding the capacity of the low-level switch, go to Step 7; otherwise, go to the next
step.

6. Group the remaining end nodes that are in close proximity by connecting them to
intermediate-capacity switches.

7. Connect the low-capacity switches and the intermediate-capacity switches to a high-
capacity switch that will serve as the backbone of the network. This will result in a
two-level hierarchy. If the high-capacity switch does not have a sufficient number of
ports, connect the low-capacity switches and the intermediate-capacity switches to two
or more high-capacity switches, and then connect these switches to a backbone. This
will result in a three-level hierarchy although the same capacity switches are used for
the backbone (the top level) and the first level below the backbone. Another option is
to connect some or all of the low-capacity switches to intermediate-capacity switches,
which are then connected to the backbone. This will also result in a three-level
hierarchy.

The above procedure generates a network with no redundancy, and thus the network
graph model],[UXG = does not have any cycles, forming a tree. Also note that in this case
the graph G is independent of time since there is no switching to alternate paths between
nodes. For any design generated via the above procedure, the reliability and availability, and
the offered load to all the network links and nodes can be found using the approaches given
in Sections 4 and 5. Based on this analysis, the initial design can be modified and then re-
analyzed in order to iterate to an acceptable design.

To achieve a desired reliability for a controls application, it is very likely that some
degree of redundancy will be necessary; that is, it will be necessary to have alternate paths
between some nodes. It is important to emphasize that for Ethernet it is not possible to have
more than one operational path between a pair of nodes at the same time. However, by using
Ethernet switches that support the Spanning Tree Algorithm and Protocol (IEEE Standard
802.1d), it is possible to provide alternate paths in the network. Using the Spanning Tree
Algorithm, the switches learn the multiple paths, and then eliminate them by disabling switch

5

ports to form a tree. The tree is called a spanning tree since it connects (spans) all the end
nodes in the network. When the network software detects a failure, an alternate path is
enabled. This corresponds to the network graph model)](),([)(tUtXtG = switching from
one tree to another tree whenever an alternate path is enabled.

Various degrees of redundancy are possible in the network. In the hierarchical hub
configuration discussed above, redundancy can be added by interconnecting switches in the
same level. For example, if this is done for the two-level structure in Fig. 1, we obtain the
network in Fig. 2. If one or more of the links connecting the hubs to the backbone fail and/or
the backbone fails, the redundant connections between the hubs can be enabled so that all the
end nodes remain connected.

If any one of the hubs or any one of the links from the end nodes to the hubs fail in
the network in Fig. 2, complete connectivity of the network will be lost; that is, various pairs
of end nodes will not be able to communicate. To prevent this, we must add additional
redundancy so that there is an alternate link from every end node to a separate hub. This can
be accomplished by using two-port network interface cards (NICs) on the end nodes.

Suppose that two-port NICs are used on each of the end nodes for the network in Fig.
2, and each end node is connected using two separate links to two different hubs in the
network. Then a single failure of any link or internal node in the network will not result in a
loss of connectivity; that is, all end nodes will be able to communicate, assuming that end
nodes do not fail. This situation is referred to as full redundancy, meaning that any single
failure of a link or internal node in the network does not affect network connectivity.

For a network given by a hierarchical switching hub configuration, rules can be
specified for achieving full redundancy. First, we denote the levels of the hierarchy by Level
1, Level 2, Level 3, and so on. Level 1 is the backbone, Level 2 consists of switches that
connect to the backbone, Level 3 consists of switches that connect to the switches in Level 2,
and so on. End nodes may be connected to switches at any level in the hierarchy, including
the backbone. In terms of this setup, the rules for achieving full redundancy are:

1. Every end node has a two-port NIC with links connected to two different switches in
the same level.

2. All switches in Level 2 (below the backbone) are connected together to form a string.

HubHub Hub

Backbone

Fig. 2 Two-level hierarchical network with redundancy

6

3. Every switch in Level 3 is connected to two separate switches in Level 2, and if there
are additional levels, each switch in these levels is connected to two separate switches
in the level above.

Additional redundancy can be achieved by connecting the switches in Level 3 together to
form a string, and doing the same for any additional levels.

In the configuration that results from applying the above rules, the backbone is not
duplicated. If the backbone fails, the string connection of switches in Level 2 takes over. This
may be acceptable for temporary operation until the backbone is repaired or replaced.
However, since the switches in Level 2 will most likely have much less capacity than the
backbone, the string connection of the Level 2 switches may not be able to handle the traffic
that would normally go through the backbone. Determining the offered loads on the Level 2
switches in case of a backbone failure can be carried out using the load analysis given in
Section 4.

There are possible variations on the configuration that results from applying the
above rules. For example, we could add an alternate backbone with every switch in Level 2
connected to both the primary and alternate backbones. In this case, the switches in Level 2
do not have to be connected together in a string. If a port on the primary backbone fails, a
port on the alternate backbone can be enabled so that complete connectivity is maintained.

The reliability and availability, and loading for configurations with redundancy can
be analyzed using the results in the next two sections. As noted above, an initial design can
be modified based on these analysis tools in order to achieve an acceptable design.

4. Network Reliability and Availability

Let X denote the time to failure (TTF) due to hardware or software of a network component
(link or node) assuming that the component is new at time 0=t . In general, X is a random
variable with the probability distribution)(tF defined as =≤=)()(tXPtF probability that
the TTF X is less than or equal to t .

The reliability)(tR of the component is defined by)(1)(tFtR −= . By definition of)(tF ,
)(tR is equal to the probability that the TTF X is greater than t . An equivalent

characterization of the reliability)(tR is that it is the probability that the component is
operational over the time interval from 0 to t .

It is known that the general form of the reliability function)(tR is

0)(exp
0

>







λ= ∫ t,dtt-R(t)

t

(1)

7

where)(tλ is the instantaneous failure rate defined as follows: Letting t∆ denote a small
interval of time,)(tt λ∆ is equal to the probability that the TTF X is between t and tt ∆+
given that the component did not fail over the time interval from 0 to t . It is assumed that
the component has been burned in, so that the initial value)0(λ of the instantaneous failure
rate is equal to zero. This is a reasonable assumption for nodes consisting of electronic
devices such as repeaters or switches, since vendors operate these devices through the infant
mortality time period before shipment. It is also a reasonable assumption for links since once
a link is connected, tested, and proven to be operational, the instantaneous failure rate of the
link should initially be zero.

If the component is aging as time goes by, the probability it will fail in the time
interval from t to tt ∆+ given that it did not fail over the time interval from 0 to t will
increase as t increases. Thus for components with aging,)(tλ will increase as t increases.
Aging can be taken into account by using the Weibull distribution to model the time to
failure X . For this distribution, the reliability function of the component is given by

 0exp >



















θ
= t,

t
- R(t)

m

 (2)

where θ and m are positive real numbers with 1>m . Writing)(tR in the form (1), we see
that the instantaneous failure rate is

1

(
m-

tm
 t) 








θθ
=λ (3)

Note that when 1=m ,)(tλ is a constant equal to θ1 and thus in this case there is no aging.
For 1>m ,)(tλ clearly increases as t increases and 0)0(=λ , and thus there is aging with
the initial value of the instantaneous failure rate equal to zero. The larger the value of 1>m ,
the faster the component ages. For a network component, a value of m equal to 2 or 3 is
most likely sufficient to capture the aging of the component.

The mean time to failure (MTTF) is the expected value][XE of the time to failure
X . For the Weibull distribution with)(tR given by (2), the MTTF is given by

)
1

1(MTTF
m

+Γθ= (4)

where)(xΓ is the gamma function defined by

 ∫
∞

ττ−τ=Γ
0

)exp()(dx x

When the MTTF of the network component is specified, the parameter θ in the Weibull
distribution can be determined using (4).

8

The analysis of network availability given below is developed in terms of the MTTF
of the network components, and thus the MTTF of the components must be specified. The
MTTF for various network devices such as switches can be obtained from vendors. For a
link, the most likely cause of failure is the connection of the link at the end points. It is also
possible that a link may fail at some point along its length, due for example to the cable being
cut. These factors play a major role in determining the MTTF for a link. It may be possible to
generate a good estimate of the MTTF of a link by using link failure information for some
existing network. In the analysis given below, we take the MTTF of a link to be 50 years.

The availability)(tA of a network component at time t is defined to be the
probability that the component is operational at time t . In the following development we
assume that when a component fails it is replaced or repaired to new condition. As a
consequence of this assumption, the mean time between failure (MTBF) is equal to the mean
time to failure (MTTF) defined above. Hence, the MTBF is also given by (4) when the TTF
X is modeled by a Weibull distribution.

A differential equation for)(tA can be derived as follows: With t∆ equal to a small
interval of time, by the total probability theorem the availability)(ttA ∆+ at time tt ∆+ can
be expressed in the form

)](1[)()()](1[)(tAtttAttttA −ν∆+γ∆−=∆+ (5)

where)(1 tt γ∆− is the probability the component is operating at time tt ∆+ given that it is
working at time t and)(tt ν∆ is the probability that the component is working at time tt ∆+
given that it is not working at time t . Thus,)(tt γ∆ is the probability that the component is
not working at time tt ∆+ given that it is working at time t , and)(tν is the instantaneous
repair rate of the component.

Rewriting (5) gives

[])()()()(
)()(

tvtAtt
t

tAttA
+ν+γ−=

∆
−∆+

and in the limit as 0→∆t , we have the differential equation

)()()]()([
)(

tvtAtt
dt

tdA
+ν+γ−= (6)

Assuming the component is new at time 0=t , the initial condition for (6) is 1)0(=A . The
availability)(tA can then be determined by solving (6) with 1)0(=A .

In the case when)(tγ and)(tν in (6) are constants so that γ=γ)(t and ν=ν)(t for

all t , γ1 is the mean time between failure (MTBF) and ν1 is the mean time to repair

9

(MTTR). In this case, the solution)(tA to (6) decreases as t increases, and in the limit as
∞→t , converges to the value

MTTR MTBF

MTBF
)(

+
=∞A (7)

The value)(∞A given by (7) is the steady-state value of the availability. From the form of
(7) we see that)(∞A is the fraction of time that the component is operational in steady-state
operation.

For components with aging,)(tγ will vary as a function of t , and thus the
assumption that it is constant is not valid. In this case, the determination of)(tγ is very
difficult since the probability the component is not working at time tt ∆+ given that it is
working at time t depends on when the component was last repaired. However, an
approximate solution can be generated by assuming that the component was replaced or
repaired to new condition at time MTBF−t . Then)MTBF()(tt ∆+λ=γ , where)(tλ is
given by (3). Inserting tt ∆+= MTBR into (3) and using the fact that t∆ is a small interval
gives

()

m

mm
t

θ
=γ

−1MTBF
)((8)

Then since MTBF=MTTF and MTTF is given by (4), using (4) in (8) gives

MTBF

1
1

)(

m

m
m

t














 +Γ

=γ

If)(tν is a constant equal to MTTR1 , it then follows that as ∞→t , the solution)(tA to
(6) converges to

C
A

(MTTR) MTBF

MTBF
)(

+
=∞ (9)

where

m

1
1 














 +Γ=

m
mC (10)

10

Some values for C are shown in Table 1.

Table 1 Some values of C for different values of m

m 1 (No aging) 2 3 4
C 1.000 1.570 2.136 2.700

From (9) we see that a larger 1>m (faster aging rate) results in a larger C and
therefore a smaller steady-state availability. Note however that the effect in going from

1=m to 4=m is very small since the change in C is not that great and the MTBF for a
network component will be much larger than the MTTR.

Now suppose that a network contains Q components with)(tRi and)(∞iA equal to

the reliability function and steady-state availability of component i in the network. The
reliability function)(tR of the network is the probability that all end nodes can communicate
over the time interval from 0 to t assuming that the network is in new condition at time 0 .
The availability)(tA of the network is the probability that all end nodes can communicate at
time t . The steady-state availability)(∞A is equal to)(tA in the limit as ∞→t .

As discussed in the previous section, if the network has no redundancy so that the
network graph model has no cycles, then the network is a tree. In this case, the network
reliability)(tR is equal to the product of the component reliabilities)(tRi and the steady-

state network availability)(∞A is the product of the component steady-state availabilities

)(∞iA ; that is

)()()()(and)()()()(2121 ∞∞∞=∞= QQ AAAAtRtRtRtR KK (11)

For an example of the availability computation, suppose that the network consists of
500 links and 25 internal nodes (switches, for example) with the MTTF of a link equal to 50
years and the MTTF of a node equal to 20 years. This number of links and nodes, and the
values for the MTTF, may be fairly realistic for the high-level network of a complex control
system. Assuming that the MTTR of a link or node is given in hours and 1=C , the steady-
state availability of the overall network is given by

25500

)24)(365)(20(

)24)(365)(20(

)24)(365)(50(

)24)(365)(50(








+








+

=
YY

 A (12)

The network availability for some MTTR values is shown in Table 2.

Table 2 Steady-state availability for different values of MTTR

MTTR (Hours) 1 2 4 8
Availability 0.9987166 0.9974348 0.9948762 0.9897787

11

Using the above values for A , we can compute the mean time between failures in the
overall network: Letting D denote the mean time between failures in the overall network, we
have that)MTTR/(+= DDA and thus,)1/(MTTR))((AAD −= . Inserting the values for
A and MTTR given above results in 32≈D days for all four values of MTTR . Thus, in
steady-state operation a failure can be expected every 32 days on the average. Of course, the
extent of the loss of network connectivity resulting from a failure depends on what failed.
This is a different problem that is not considered in this work.

The availability obtained above is not likely to be acceptable for a control application,
and thus there is a need for redundancy. Hence, suppose that redundant links and internal
nodes are added to the network and that these components are switched in via the software
when needed. Given the nature of redundancy in a network, the redundant components will
be operational even when they are not used, and thus the redundant components are active
standbys. The steady-state availability of a network with redundancy can be computed by
determining all the spanning trees in the network, where a spanning tree is a minimal tree
that contains all of the end nodes. By minimal, we mean that there is no subgraph of the tree
that also spans all the end nodes. Given the network graph model],[UXG = , the spanning
trees can be determined using existing algorithms [GoM84] and thus they are readily
computed.

For an example, suppose that original nonredundant network is a two-level
hierarchical configuration with a total of 476 end nodes, 500 links and 25 internal nodes.
Since one of the 25 internal nodes is the backbone, the remaining 24 internal nodes are the
hubs in the lower level. Of the 500 links, 476 are links between the lower-level hubs and the
end nodes, and the remaining 24 are the links between the lower-level hubs and the
backbone. Assuming the MTBF of a link is 50 years, the MTBF of an internal node is 20
years, and the MTTR of a node or link is 4 hours, as computed above the availability of the
overall network is equal to 0.9948762. Now suppose that using two-port NICs, each end
node is connected to two separate hubs in the lower level. This will require that the number
of lower-level hubs is increased from 24 to 48 and the number of links is increased from 500
to 1000. The increase in the number of links includes the additional links resulting from the
connection of each additional hub in the lower level to the backbone. We assume that the
hubs in the lower level are not connected to each other.

For this configuration, it can be shown that the overall network availability A is
given by

A = (availability of backbone)×(product of the availabilities of the links connecting the hubs
to the backbone)×(product of the availabilities of the links with active standbys connecting
the hubs to the end nodes)×(product of the availabilities of the hubs with active standbys)

The availability of a link with an active standby is equal to 22 LL AA − , where LA is
the availability of a link and its standby. The availability of a hub with an active standby is

12

equal to 22 HH AA − , where HA is the availability of a hub and its standby. Therefore, the
network availability is

 [] []242500248 22 HHLLLB AAAAAAA −−= (13)

Evaluating (13) with

4)24)(365)(20(

)24)(365)(20(
,

4)24)(365)(50(

)24)(365)(50(

+
==

+
= BHL AAA

results in 9995389.0=A . This is a major improvement in availability; in fact, the mean time
between failures of the redundant network is approximately 361 days, whereas, for the
nonredundant network the MTBF is 32 days.

The availability can be further enhanced by adding an alternate backbone with each
lower-level hub connected to both the primary and alternate backbones. In this case, it can be
shown that the availability is 6629999999412.0=A . With this availability, the mean time
between failures is 7,774 years, which means that there will be no failures that result in a loss
of network connectivity during the lifetime of the network! Components will fail, but when
this happens the standby units take over so there is no loss of connectivity. This result on the
availability assumes that any primary or standby unit that fails during the lifetime of the
network is repaired within a mean time of 4 hours of the failure.

5. Network Load Analysis

As we saw earlier, the topology of switched networks can be conveniently described by a
graph model. Graph models have been used in a few studies like [GuR91] and [Gur92] for
performance modeling of local-area and heterogeneous data networks, and more research in
this area is expected to emerge in the coming years.

The concept of network flow has been used to model many problems in transportation
and communication networks ([GoM84], [Ker93]). In computer communication networks,
flows can represent either the total amount of information transferred between two nodes or
the amount of information per unit time. The best analogy is the use of flows in electric
circuits to represent the flowing electric charges or currents. Here, we take the rate-based
approach, and use flows to describe the rate of information transferred over the network. The
notion of flow used here is inspired by the similar idea of a communication session in
[Cru91a] and [Cru91b].

Let Tij denote the information flow in packets per second between end nodes i and j of
the network. We define the traffic matrix of the network to be the n × n matrix ΤΤ = (Tij),
where n is the number of end nodes. The traffic matrix ΤΤ may consist of the maximum flows,
average flows, etc. of the information flow between the end nodes. In an actual network, the
diagonal elements of the traffic matrix are all zero, as no end node generates data packets
destined for itself. However, as we shall see shortly, a basic step in the load analysis of tree

13

networks is to remove some end nodes and continue the analysis on a trimmed network. The
resulting network will be an artificial network with end nodes that may correspond to
internal nodes of the original network. To keep track of the flows inside the network as it gets
smaller, it is convenient to assign some internal traffic to the end nodes that actually
represents part of the total flow through those nodes in the bigger network. The traffic matrix
is therefore assumed to have nonzero diagonal elements in general. In the following analysis,
it is assumed that all network traffic is generated by and destined for the end nodes.

Given the traffic matrix ΤΤ and the network topology specified by a directed graph G =
[X,U], we next develop an algorithm for determining the total flows through links and nodes
of a network. Intuitively speaking, the total flow through a link (node), also called the offered
load to the link (node), is the amount of information passing through the link (node) per unit
time. The load analysis problem for a graph can be described as computing the offered load
to all links and nodes of the graph. For a complete discussion of the subject see [KaT98].

A directed graph has directed links, in the sense that each link is an ordered pair of
nodes),(ji , where i is called the source node and j is called the sink node. Node j is a
successor of i , and i a predecessor of j , if there exists a link),(ji in the graph. The set of

successors of i defines a mapping denoted by iΓ . We further assume that G = [X,U] is an

arborescence; that is, G = [X,U] is a directed graph with a root Xr ∈ such that for every
node Xj ∈ , there is a path from r to j in G. The depth of a node belonging to an
arborescence is the length of the longest path starting from that node. The depth of an
arborescence is the maximum depth of its nodes. For example, the graph shown in Fig. 3 is
an arborescence with root 7, because there is a path from node 7 to every other node in the
tree. The arborescence has a depth of two, which is also the depth of its root node. Note that
the notion of depth is not the same as the notion of level considered in Section 3.

In what follows, we denote the set of end nodes by tX . For any set

{ } tm XyyY ⊆= ,...,1 , Yn,e denotes an n -vector with ones at positions myy ,...,1 and zeros

elsewhere. When there is no ambiguity about the size of the vector we will use the simpler
notation Ye . If Y has a single member y , we use the simplified notation yn,e to represent

the vector. The proofs of the following results are not included due to space limitations. The
proofs can be found in [KaT98].

1
2 3

4

6

5

7

Fig. 3. An arborescence having depth 2.

14

The following theorem is the first step toward the load analysis of tree networks. It
basically shows that the total flow through all nodes with a depth of one can be found by
simple matrix operations on the traffic matrix of the network.

Theorem 1 The total flow through any node i with a depth of one is given by

iiiititi

TT
XX

T
i ΓΓΓΓΓΓΓΓΓΓΓΓ eTeeTeeTe ˆˆˆ ++=λ −− (14)

where T̂ is the apparent traffic matrix defined as









=
=
≠

=
one ofdepth a has node endfor r predecesso theand ;0

onean greater thdepth a has node endfor r predecesso theand ;

;
ˆ

jkj

jkjT

kjT

T jk

jk

jk

(15)

Using Theorem 1, one can find the total flow through all nodes of a tree network that
have a depth of one. The next theorem paves the way for a complete analysis of the network
by showing that the graph model of the network can be replaced by a simpler one after all
nodes with a depth of one have been covered. It then follows that a recursive application of
Theorem 1 and the simplification scheme, developed next, can be used to cover all nodes of
the network and complete the load analysis.

Theorem 2 Consider a network represented by a tree T and a traffic matrix T . T has n end
nodes and a depth of d . Let { }qvvV ,,1 K= be the set of depth-1 nodes of T . Let

U
q

i
vt i

X
1

*

=

Γ= be the set of T end nodes with a predecessor in V and assume npX t ≤=* .

Now consider T ′ , a trimmed version of T , obtained by removing all end nodes in *
tX and

links attached to them. The following properties hold for T ′ :

i. T ′ has a depth of 1−d .

ii. T ′ has m end nodes with qpnm +−= .

iii. Renumber the end nodes in T ′ from 1 to m . Define an mn × succession matrix E as
follows. 1=ijE if end node i in T is a successor or the same as end node j in T ′ ,

and 0=ijE otherwise. Then the total flow through end node j of T ′ is given by the

sum of the elements in row j and column j of the matrix product

ETET ˆT=′ (16)

15

where T̂ is the apparent traffic matrix defined in Theorem 1. Furthermore, if the above
traffic matrix is associated with T ′ , the total flow through all common links and nodes of
T and T ′ will be the same.

The above theorem is the key to load analysis of switched networks with an
arborescence topology. Starting with the graph model of the original network, the theorem
can be repetitively applied to the model until it is reduced to a single node, which happens to
be the root node for the original arborescence. Part (i) of the theorem guarantees that for an
arborescence of depth d , this can be achieved in exactly d steps. At step i (numbered
backward from d to 1), the total flows through the end nodes of the network iT are found by

a simple operation on the traffic matrix iT . Using the theorem, a reduced network 1−iT with a

depth of 1−i and the corresponding traffic matrix 1−iT are generated next, and the process is

repeated until the network is reduced to a single node with a depth of zero, completing the
analysis. Also, note that because of the tree structure of the network, at each step only one
link is connected to each end node of iT and therefore the total flow through this link is also

equal to the total flow through the terminating end node. More precisely, we have the
following algorithm based on Theorem 2.

Theorem 3 (Load Analysis of Networks with Arborescence Topology) Consider a
network with the graph model T and the traffic matrix T . T defines an arborescence with a
depth of d . Set TTd =: , TT =:d and di =: .

1. Set im equal to the order of iT (number of end nodes in iT).

2. Do the following steps for imj ,,1K= :

§ Compute jσ , sum of the elements in row j and column j of iT .

§ Find the node v in the original network T that corresponds to end node j in iT ,

and set jv σ=λ : .

§ Find the link u in the original network T that corresponds to the link terminating
at end node j in iT , and set ju σ=ψ : .

3. Construct the reduced graph model 1−iT by removing all end nodes of iT with a

predecessor having a depth of one, and the links terminating at those end nodes.
Identify and number the new and possibly remaining old end nodes.

4. Find the succession matrix iE and the apparent traffic matrix iT̂ as described in

Theorem 2 and compute the traffic matrix for the reduced network ii
T
ii ETET ˆ:1 =− .

5. Set 1: −= ii .
6. If 0>i go to step 1 and stop otherwise. At this point the total flows through all links

and nodes of the network have been computed and the load analysis is complete.

Illustrative Example

Consider a switched Ethernet network with 16 end nodes as shown in Fig. 4. Node 16
represents the Master Control Room (MCR) and a major portion of the network traffic is

16

directed toward this node. The traffic matrix for the average flows, expressed in thousands of
packets per second for example, is given by

Fig. 4 A switched Ethernet network with 16 end nodes: (a) Network configuration
(b) Network graph model

























































=

0.50.50.50.50.50.50.50.50.50.50.50.50.50.50.5

0.55.16.17.18.19.10.21.22.23.24.25.26.27.28.2

0.54.15.16.17.18.19.10.21.22.23.24.25.26.27.2

0.53.14.15.16.17.18.19.10.21.22.23.24.25.26.2

0.52.13.14.15.16.17.18.19.10.21.22.23.24.25.2

0.51.12.13.14.15.16.17.18.19.10.21.22.23.24.2

0.50.11.12.13.14.15.16.17.18.19.10.21.22.23.2

0.59.00.11.12.13.14.15.16.17.18.19.10.21.22.2

0.58.09.00.11.12.13.14.15.16.17.18.19.10.21.2

0.57.08.09.00.11.12.13.14.15.16.17.18.19.10.2

0.56.07.08.09.00.11.12.13.14.15.16.17.18.19.1

0.55.06.07.08.09.00.11.12.13.14.15.16.17.18.1

0.54.05.06.07.08.09.00.11.12.13.14.15.16.17.1

0.53.04.05.06.07.08.09.00.11.12.13.14.15.16.1

0.52.03.04.05.06.07.08.09.00.11.12.13.14.15.1

0.51.02.03.04.05.06.07.08.09.00.11.12.13.14.1

T

The load on external node i is simply found by summing the elements in row i and
column i of the above matrix. These loads are listed in Table 3. As the table shows, the
offered load to all external nodes of the network except the master control room is the same.

(b)

13 14 15 16

A

9 10 11 125 6 7 81 2 3 4

B C D

E

Switch E

Switch D

13 15 1614

Switch A

1 3 42

Switch B

5 7 86

Switch C

9 11 1210
(a)

17

Table 3 Average offered load to external nodes of the networks in Fig. 4

0.1506.506.506.506.506.506.506.50Load Offered

161514131211109Node End

6.506.506.506.506.506.506.506.50Load Offered

87654321Node End

Only the total flow through internal nodes of the networks are computed, as the loads
on network switches are the primary parameters of interest in this example. The hierarchical
network has a depth of two and therefore all the nodes are covered in two steps. These steps
are shown in Fig. 5. The offered loads to switches A, B, C and D are found after the first
iteration, as all four switches have the same depth of one. The last node covered is switch E,
the root node of the network.

The average offered load to all switch devices is shown in Fig. 6. As seen in the
figure, the backbone switch E experiences the highest load in the network. One interesting
observation about the hierarchical design is that it can be implemented by two distinct classes
of switch devices. The low-level or local switches A, B, C and D undergo a local traffic and
have roughly the same amount of offered load, making it possible to select these devices
from a class of modest switches without degrading the performance. The high-level or
backbone switch E maintains the connectivity of the entire network and clearly experiences a
higher load, suggesting the fact that it should be selected from a class of high-performance
switch devices. To ensure that no packets are dropped in internal nodes, the maximum
offered load to all these nodes can be computed based on the network maximum flows and
the analysis technique developed here. The capacity of each network component is then
selected to be higher than its maximum offered load, a design step referred to as capacity
planning.



















=

1111

1111

1111

1111

2
TE



















==

7.380.418.456.50

8.334.178.282.35

0.296.174.178.28

2.242.116.174.17

ˆ
2221 ELEL T

()11111 =TE

()6.363ˆ
1110 == ELEL T

Fig. 5 Load analysis of the network in Fig. 4

A B C D

E

Offered Load to A=185.0

Offered Load to B=185.0

Offered Load to C=185.0

Offered Load to D=263.1

E

Offered Load to E=363.6

18

Fig. 6 Average switch loads for the network in Fig. 4

An approximate delay analysis can be done by computing the delay time for each
switch device as a function of its offered load, and using the graph model of the network to
combine these delay times and find the end-to-end delay times. As a beginning step, we have
modeled each switch with a simple M/D/1 queueing system. This means that the packet
interarrival times are assumed to have an exponential distribution and the packet service time
is the constant transmission time T . The average queueing delay for a switch with offered
load λ is given by

TT

TT
W

1
,

12 max =λ<λ
λ−

λ
⋅= (17)

Assuming a store-and-forward operation for the switches, the delay time for
communication between two end nodes is found by adding the queueing times for the
switches on the connecting path and the appropriate number of transmission times depending
on the number of switches a packet has to visit. The end-to-end delay times for the
hierarchical design is shown in Fig. 7. The packet transmission time T in this analysis has
been set to the transmission time for a Fast-Ethernet maximum-sized packet:

.sec102144.1
bits/sec.10100

bits81518 4
6

−∗=
∗

∗
=T (18)

6. Conclusions

This paper is an attempt to develop a systematic design methodology for switched networks
in control systems. The starting point is an initial heuristic design based on experience and a
knowledge of the performance of similar existing networks. We have shown how this initial
design can be further refined to achieve certain reliability and performance requirements.
Even with this approach, the network design for large, complex, highly distributed control
systems will be an iterative process. The advantage to this approach is that the iterations do
not involve hardware and construction costs. Therefore, this approach should lead to network
designs that more closely meet performance requirements at a lower cost.

A B C D E
0

50

100

150

200

250

300

350

400

Switch Device

Offered Load to Each Switch
Device

19

2
4

6
8

10
12

14
16

2

4

6

8

10

12

14

16

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
-4

End- to -End De lay T imes fo r the Two-Leve l H ie rarch ica l Des ign

Fig. 7 End-to-end delay time for the two-level hierarchical design

References

[Cru91a] R. L. Cruz, "A Calculus for Network Delay, Part I: Network Elements in
Isolation", IEEE Trans. Inform. Theory, vol. 37, pp. 114-131, Jan. 1991.

[Cru91b] R. L. Cruz, "A Calculus for Network Delay, Part II: Network Analysis", IEEE
Trans. Inform. Theory, vol. 37, pp. 132-141, Jan. 1991.

[GoM84] M. Gondran and M. Minoux, Graphs and Algorithms, New York: Wiley, 1984.

[GuR91] S. Gupta and K. W. Ross, "Performance Modeling and Optimization of Networks
of Bridged LANs", Queueing Systems, vol. 9, pp. 113-132, 1991.

[GuR92] S. Gupta and K. W. Ross, "Performance Modeling of Heterogeneous Data
Networks", Annals of Operations Research, vol. 35, pp. 125-151, 1992.

[KaT98] E. W. Kamen and P. Torab, "Process Control and Information System Network
Architecture for Application to Particle Accelerator Facilities", School of
Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta,
GA, Dec. 1998.

[Ker93] A. Kershenbaum, Telecommunications Network Design Algorithms, New York,
NY: McGraw-Hill, 1993.

